Archive for the ‘Proceedings of the National Academy of Sciences’ Category

Evolution of music by public choice

August 15, 2012 Comments off

Evolution of music by public choice

Source: Proceedings of the National Academy of Sciences

Music evolves as composers, performers, and consumers favor some musical variants over others. To investigate the role of consumer selection, we constructed a Darwinian music engine consisting of a population of short audio loops that sexually reproduce and mutate. This population evolved for 2,513 generations under the selective influence of 6,931 consumers who rated the loops’ aesthetic qualities. We found that the loops quickly evolved into music attributable, in part, to the evolution of aesthetically pleasing chords and rhythms. Later, however, evolution slowed. Applying the Price equation, a general description of evolutionary processes, we found that this stasis was mostly attributable to a decrease in the fidelity of transmission. Our experiment shows how cultural dynamics can be explained in terms of competing evolutionary forces.

Developed and developing world responsibilities for historical climate change and CO2 mitigation

August 13, 2012 Comments off

Developed and developing world responsibilities for historical climate change and CO2 mitigation

Source:  Proceedings of the National Academy of Sciences

At the United Nations Framework Convention on Climate Change Conference in Cancun, in November 2010, the Heads of State reached an agreement on the aim of limiting the global temperature rise to 2 °C relative to preindustrial levels. They recognized that long-term future warming is primarily constrained by cumulative anthropogenic greenhouse gas emissions, that deep cuts in global emissions are required, and that action based on equity must be taken to meet this objective. However, negotiations on emission reduction among countries are increasingly fraught with difficulty, partly because of arguments about the responsibility for the ongoing temperature rise. Simulations with two earth-system models (NCAR/CESM and BNU-ESM) demonstrate that developed countries had contributed about 60–80%, developing countries about 20–40%, to the global temperature rise, upper ocean warming, and sea-ice reduction by 2005. Enacting pledges made at Cancun with continuation to 2100 leads to a reduction in global temperature rise relative to business as usual with a 1/3–2/3 (CESM 33–67%, BNU-ESM 35–65%) contribution from developed and developing countries, respectively. To prevent a temperature rise by 2 °C or more in 2100, it is necessary to fill the gap with more ambitious mitigation efforts.

Global economic potential for reducing carbon dioxide emissions from mangrove loss

August 7, 2012 Comments off

Global economic potential for reducing carbon dioxide emissions from mangrove loss

Source:  Proceedings of the National Academy of Sciences

Mangroves are among the most threatened and rapidly disappearing natural environments worldwide. In addition to supporting a wide range of other ecological and economic functions, mangroves store considerable carbon. Here, we consider the global economic potential for protecting mangroves based exclusively on their carbon. We develop unique high-resolution global estimates (5′ grid, about 9 × 9 km) of the projected carbon emissions from mangrove loss and the cost of avoiding the emissions. Using these spatial estimates, we derive global and regional supply curves (marginal cost curves) for avoided emissions. Under a broad range of assumptions, we find that the majority of potential emissions from mangroves could be avoided at less than $10 per ton of CO2. Given the recent range of market price for carbon offsets and the cost of reducing emissions from other sources, this finding suggests that protecting mangroves for their carbon is an economically viable proposition. Political-economy considerations related to the ability of doing business in developing countries, however, can severely limit the supply of offsets and increases their price per ton. We also find that although a carbon-focused conservation strategy does not automatically target areas most valuable for biodiversity, implementing a biodiversity-focused strategy would only slightly increase the costs.

Human-like brain hemispheric dominance in birdsong learning

August 5, 2012 Comments off

Human-like brain hemispheric dominance in birdsong learning

Source: Proceedings of the National Academy of Sciences

Unlike nonhuman primates, songbirds learn to vocalize very much like human infants acquire spoken language. In humans, Broca’s area in the frontal lobe and Wernicke’s area in the temporal lobe are crucially involved in speech production and perception, respectively. Songbirds have analogous brain regions that show a similar neural dissociation between vocal production and auditory perception and memory. In both humans and songbirds, there is evidence for lateralization of neural responsiveness in these brain regions. Human infants already show left-sided dominance in their brain activation when exposed to speech. Moreover, a memory-specific left-sided dominance in Wernicke’s area for speech perception has been demonstrated in 2.5-mo-old babies. It is possible that auditory-vocal learning is associated with hemispheric dominance and that this association arose in songbirds and humans through convergent evolution. Therefore, we investigated whether there is similar song memory-related lateralization in the songbird brain. We exposed male zebra finches to tutor or unfamiliar song. We found left-sided dominance of neuronal activation in a Broca-like brain region (HVC, a letter-based name) of juvenile and adult zebra finch males, independent of the song stimulus presented. In addition, juvenile males showed left-sided dominance for tutor song but not for unfamiliar song in a Wernicke-like brain region (the caudomedial nidopallium). Thus, left-sided dominance in the caudomedial nidopallium was specific for the song-learning phase and was memory-related. These findings demonstrate a remarkable neural parallel between birdsong and human spoken language, and they have important consequences for our understanding of the evolution of auditory-vocal learning and its neural mechanisms.

Variation in neural development as a result of exposure to institutionalization early in childhood

July 27, 2012 Comments off

Variation in neural development as a result of exposure to institutionalization early in childhood
Source: Proceedings of the National Academy of Sciences

We used structural MRI and EEG to examine brain structure and function in typically developing children in Romania (n = 20), children exposed to institutional rearing (n = 29), and children previously exposed to institutional rearing but then randomized to a high-quality foster care intervention (n = 25). In so doing, we provide a unique evaluation of whether placement in an improved environment mitigates the effects of institutional rearing on neural structure, using data from the only existing randomized controlled trial of foster care for institutionalized children. Children enrolled in the Bucharest Early Intervention Project underwent a T1-weighted MRI protocol. Children with histories of institutional rearing had significantly smaller cortical gray matter volume than never-institutionalized children. Cortical white matter was no different for children placed in foster care than never-institutionalized children but was significantly smaller for children not randomized to foster care. We were also able to explain previously reported reductions in EEG α-power among institutionally reared children compared with children raised in families using these MRI data. As hypothesized, the association between institutionalization and EEG α-power was partially mediated by cortical white matter volume for children not randomized to foster care. The increase in white matter among children randomized to an improved rearing environment relative to children who remained in institutional care suggests the potential for developmental “catch up” in white matter growth, even following extreme environmental deprivation.

Honesty mediates the relationship between serotonin and reaction to unfairness

June 10, 2012 Comments off

Honesty mediates the relationship between serotonin and reaction to unfairness
Source: Proceedings of the National Academy of Sciences

How does one deal with unfair behaviors? This subject has long been investigated by various disciplines including philosophy, psychology, economics, and biology. However, our reactions to unfairness differ from one individual to another. Experimental economics studies using the ultimatum game (UG), in which players must decide whether to accept or reject fair or unfair offers, have also shown that there are substantial individual differences in reaction to unfairness. However, little is known about psychological as well as neurobiological mechanisms of this observation. We combined a molecular imaging technique, an economics game, and a personality inventory to elucidate the neurobiological mechanism of heterogeneous reactions to unfairness. Contrary to the common belief that aggressive personalities (impulsivity or hostility) are related to the high rejection rate of unfair offers in UG, we found that individuals with apparently peaceful personalities (straightforwardness and trust) rejected more often and were engaged in personally costly forms of retaliation. Furthermore, individuals with a low level of serotonin transporters in the dorsal raphe nucleus (DRN) are honest and trustful, and thus cannot tolerate unfairness, being candid in expressing their frustrations. In other words, higher central serotonin transmission might allow us to behave adroitly and opportunistically, being good at playing games while pursuing self-interest. We provide unique neurobiological evidence to account for individual differences of reaction to unfairness.

The genetic architecture of economic and political preferences

June 6, 2012 Comments off

The genetic architecture of economic and political preferences
Source: Proceedings of the National Academy of Sciences

Preferences are fundamental building blocks in all models of economic and political behavior. We study a new sample of comprehensively genotyped subjects with data on economic and political preferences and educational attainment. We use dense single nucleotide polymorphism (SNP) data to estimate the proportion of variation in these traits explained by common SNPs and to conduct genome-wide association study (GWAS) and prediction analyses. The pattern of results is consistent with findings for other complex traits. First, the estimated fraction of phenotypic variation that could, in principle, be explained by dense SNP arrays is around one-half of the narrow heritability estimated using twin and family samples. The molecular-genetic-based heritability estimates, therefore, partially corroborate evidence of significant heritability from behavior genetic studies. Second, our analyses suggest that these traits have a polygenic architecture, with the heritable variation explained by many genes with small effects. Our results suggest that most published genetic association studies with economic and political traits are dramatically underpowered, which implies a high false discovery rate. These results convey a cautionary message for whether, how, and how soon molecular genetic data can contribute to, and potentially transform, research in social science. We propose some constructive responses to the inferential challenges posed by the small explanatory power of individual SNPs.

Global risk of big earthquakes has not recently increased

June 6, 2012 Comments off

Global risk of big earthquakes has not recently increased
Source: Proceedings of the National Academy of Sciences

The recent elevated rate of large earthquakes has fueled concern that the underlying global rate of earthquake activity has increased, which would have important implications for assessments of seismic hazard and our understanding of how faults interact. We examine the timing of large (magnitude M≥7) earthquakes from 1900 to the present, after removing local clustering related to aftershocks. The global rate of M≥8 earthquakes has been at a record high roughly since 2004, but rates have been almost as high before, and the rate of smaller earthquakes is close to its historical average. Some features of the global catalog are improbable in retrospect, but so are some features of most random sequences—if the features are selected after looking at the data. For a variety of magnitude cutoffs and three statistical tests, the global catalog, with local clusters removed, is not distinguishable from a homogeneous Poisson process. Moreover, no plausible physical mechanism predicts real changes in the underlying global rate of large events. Together these facts suggest that the global risk of large earthquakes is no higher today than it has been in the past.

Long-term perspective on wildfires in the western USA

March 28, 2012 Comments off

Long-term perspective on wildfires in the western USA (PDF)
Source: Proceedings of the National Academy of Sciences

Understanding the causes and consequences of wildfires in forests of the western United States requires integrated information about fire, climate changes, and human activity on multiple temporal scales. We use sedimentary charcoal accumulation rates to construct long-term variations in fire during the past 3,000 y in the American West and compare this record to independent firehistory data from historical records and fire scars. There has been a slight decline in burning over the past 3,000 y, with the lowest levels attained during the 20th century and during the Little Ice Age (LIA, ca. 1400–1700 CE [Common Era]). Prominent peaks in forest fires occurred during the Medieval Climate Anomaly (ca. 950–1250 CE) and during the 1800s. Analysis of climate reconstructions beginning from 500 CE and population data show that temperature and drought predict changes in biomass burning up to the late 1800s CE. Since the late 1800s , human activities and the ecological effects of recent high fire activity caused a large, abrupt decline in burning similar to the LIA fire decline. Consequently, there is now a forest “fire deficit” in the western United States attributable to the combined effects of human activities, ecological, and climate changes. Large fires in the late 20th and 21st century fires have begun to address the fire deficit, but it is continuing to grow.

Hat tip: Journalist’s Resource

Severe mammal declines coincide with proliferation of invasive Burmese pythons in Everglades National Park

February 1, 2012 Comments off

Severe mammal declines coincide with proliferation of invasive Burmese pythons in Everglades National Park (PDF)
Source: Proceedings of the National Academy of Sciences

Invasive species represent a significant threat to global biodiversity and a substantial economic burden. Burmese pythons, giant constricting snakes native to Asia, now are found throughout much of southern Florida, including all of Everglades National Park (ENP). Pythons have increased dramatically in both abundance and geographic range since 2000 and consume a wide variety of mammals and birds. Here we report severe apparent declines in mammal populations that coincide temporally and spatially with the proliferation of pythons in ENP. Before 2000, mammals were encountered frequently during nocturnal road surveys within ENP. In contrast, road surveys totaling 56,971 km from 2003–2011 documented a 99.3% decrease in the frequency of raccoon observations, decreases of 98.9% and 87.5% for opossum and bobcat observations, respectively, and failed to detect rabbits. Road surveys also revealed that these species are more common in areas where pythons have been discovered only recently and are most abundant outside the python’s current introduced range. These findings suggest that predation by pythons has resulted in dramatic declines in mammals within ENP and that introduced apex predators, such as giant constrictors, can exert significant top-down pressure on prey populations. Severe declines in easily observed and/or common mammals, such as raccoons and bobcats, bode poorly for species of conservation concern, which often are more difficult to sample and occur at lower densities.

+ Everglades Python Prey Study: Frequently Asked Questions (USGS)

The El Niño–Southern Oscillation (ENSO)–pandemic Influenza connection: Coincident or causal?

January 23, 2012 Comments off

The El Niño–Southern Oscillation (ENSO)–pandemic Influenza connection: Coincident or causal? (PDF)
Source: Proceedings of the National Academy of Sciences
From press release (Columbia University Mailman School of Public Health):

Worldwide pandemics of influenza caused widespread death and illness in 1918, 1957, 1968, and 2009. A new study examining weather patterns around the time of these pandemics finds that each of them was preceded by La Niña conditions in the equatorial Pacific. The study’s authors–Jeffrey Shaman of Columbia University’s Mailman School of Public Health and Marc Lipsitch of the Harvard School of Public Health—note that the La Niña pattern is known to alter the migratory patterns of birds, which are thought to be a primary reservoir of human influenza. The scientists theorize that altered migration patterns promote the development of dangerous new strains of influenza.

Brain enlargement is associated with regression in preschool-age boys with autism spectrum disorders

November 29, 2011 Comments off

Brain enlargement is associated with regression in preschool-age boys with autism spectrum disorders (PDF)Source: Proceedings of the National Academy of Sciences

Autism is a heterogeneous disorder with multiple behavioral and biological phenotypes. Accelerated brain growth during early childhood is a well-established biological feature of autism. Onset pattern, i.e., early onset or regressive, is an intensely studied behavioral phenotype of autism. There is currently little known, however, about whether, or how, onset status maps onto the abnormal brain growth. We examined the relationship between total brain volume and onset status in a large sample of 2- to 4-y-old boys and girls with autism spectrum disorder (ASD) [n = 53, no regression (nREG); n = 61, regression (REG)] and a comparison group of age-matched typically developing controls (n = 66). We also examined retrospective head circumference measurements from birth through 18 mo of age. We found that abnormal brain enlargement was most commonly found in boys with regressive autism. Brain size in boys without regression did not differ from controls. Retrospective head circumference measurements indicate that head circumference in boys with regressive autism is normal at birth but diverges from the other groups around 4–6 mo of age. There were no differences in brain size in girls with autism (n = 22, ASD; n = 24, controls). These results suggest that there may be distinct neural phenotypes associated with different onsets of autism. For boys with regressive autism, divergence in brain size occurs well before loss of skills is commonly reported. Thus, rapid head growth may be a risk factor for regressive autism.

Global food demand and the sustainable intensification of agricultureGlobal food demand and the sustainable intensification of agriculture

November 25, 2011 Comments off

Global food demand and the sustainable intensification of agriculture (PDF)
Source: Proceedings of the National Academy of Sciences

Global food demand is increasing rapidly, as are the environmental impacts of agricultural expansion. Here, we project global demand for crop production in 2050 and evaluate the environmental impacts of alternative ways that this demand might be met. We find that per capita demand for crops, when measured as caloric or protein content of all crops combined, has been a similarly increasing function of per capita real income since 1960. This relationship forecasts a 100–110% increase in global crop demand from 2005 to 2050. Quantitative assessments show that the environmental impacts of meeting this demand depend on how global agriculture expands. If current trends of greater agricultural intensification in richer nations and greater land clearing (extensification) in poorer nations were to continue, ∼1 billion ha of land would be cleared globally by 2050, with CO2-C equivalent greenhouse gas emissions reaching ∼3 Gt y−1 and N use ∼250 Mt y−1 by then. In contrast, if 2050 crop demand was met by moderate intensification focused on existing croplands of underyielding nations, adaptation and transfer of high-yielding technologies to these croplands, and global technological improvements, our analyses forecast land clearing of only ∼0.2 billion ha, greenhouse gas emissions of ∼1 Gt y−1, and global N use of ∼225 Mt y−1. Efficient management practices could substantially lower nitrogen use. Attainment of high yields on existing croplands of underyielding nations is of great importance if global crop demand is to be met with minimal environmental impacts.

Biodiversity hotspots house most undiscovered plant species

October 1, 2011 Comments off

Biodiversity hotspots house most undiscovered plant species
Source: Proceedings of the National Academy of Sciences

For most organisms, the number of described species considerably underestimates how many exist. This is itself a problem and causes secondary complications given present high rates of species extinction. Known numbers of flowering plants form the basis of biodiversity “hotspots”—places where high levels of endemism and habitat loss coincide to produce high extinction rates. How different would conservation priorities be if the catalog were complete? Approximately 15% more species of flowering plant are likely still undiscovered. They are almost certainly rare, and depending on where they live, suffer high risks of extinction from habitat loss and global climate disruption. By using a model that incorporates taxonomic effort over time, regions predicted to contain large numbers of undiscovered species are already conservation priorities. Our results leave global conservation priorities more or less intact, but suggest considerably higher levels of species imperilment than previously acknowledged.

+ Full Paper (PDF)

Individual versus systemic risk and the Regulator’s Dilemma

September 18, 2011 Comments off

Individual versus systemic risk and the Regulator’s Dilemma
Source: Proceedings of the National Academy of Sciences

The global financial crisis of 2007–2009 exposed critical weaknesses in the financial system. Many proposals for financial reform address the need for systemic regulation—that is, regulation focused on the soundness of the whole financial system and not just that of individual institutions. In this paper, we study one particular problem faced by a systemic regulator: the tension between the distribution of assets that individual banks would like to hold and the distribution across banks that best supports system stability if greater weight is given to avoiding multiple bank failures. By diversifying its risks, a bank lowers its own probability of failure. However, if many banks diversify their risks in similar ways, then the probability of multiple failures can increase. As more banks fail simultaneously, the economic disruption tends to increase disproportionately. We show that, in model systems, the expected systemic cost of multiple failures can be largely explained by two global parameters of risk exposure and diversity, which can be assessed in terms of the risk exposures of individual actors. This observation hints at the possibility of regulatory intervention to promote systemic stability by incentivizing a more diverse diversification among banks. Such intervention offers the prospect of an additional lever in the armory of regulators, potentially allowing some combination of improved system stability and reduced need for additional capital.

+ Full Paper (PDF)

Female extrapair mating behavior can evolve via indirect selection on males

September 14, 2011 Comments off

Female extrapair mating behavior can evolve via indirect selection on males
Source: Proceedings of the National Academy of Sciences

In many species that form socially monogamous pair bonds, a considerable proportion of the offspring is sired by extrapair males. This observation has remained a puzzle for evolutionary biologists: although mating outside the pair bond can obviously increase the offspring production of males, the benefits of such behavior to females are less clear, yet females are known to actively solicit extrapair copulations. For more than two decades adaptionist explanations have dominated the discussions, yet remain controversial, and genetic constraint arguments have been dismissed without much consideration. An intriguing but still untested hypothesis states that extrapair mating behavior by females may be affected by the same genetic variants (alleles) as extrapair mating behavior by males, such that the female behavior could evolve through indirect selection on the male behavior. Here we show that in the socially monogamous zebra finch, individual differences in extrapair mating behavior have a hereditary component. Intriguingly, this genetic basis is shared between the sexes, as shown by a strong genetic correlation between male and female measurements of extrapair mating behavior. Hence, positive selection on males to sire extrapair young will lead to increased extrapair mating by females as a correlated evolutionary response. This behavior leads to a fundamentally different view of female extrapair mating: it may exist even if females obtain no net benefit from it, simply because the corresponding alleles were positively selected in the male ancestors.

Promiscuous mating produces offspring with higher lifetime fitness

September 3, 2011 Comments off

Promiscuous mating produces offspring with higher lifetime fitness (PDF)
Source: Proceedings of the National Academy of Sciences

In many species, each female pairs with a single male for the purpose of rearing offspring, but may also engage in extra-pair copulations. Despite the prevalence of such promiscuity, whether and how multiple mating benefits females remains an open question. Multiple mating is typically thought to be favoured primarily through indirect benefits (i.e. heritable effects on the fitness of offspring). This prediction has been repeatedly tested in a variety of species, but the evidence has been equivocal, perhaps because such studies have focused on pre-reproductive survival rather than lifetime fitness of offspring. Here, we show that in a songbird, the dark-eyed junco (Junco hyemalis), both male and female offspring produced by extra-pair fertilizations have higher lifetime reproductive success than do offspring sired within the social pair. Furthermore, adult male offspring sired via extra-pair matings are more likely to sire extra-pair offspring (EPO) themselves, suggesting that fitness benefits to males accrue primarily through enhanced mating success. By contrast, female EPO benefited primarily through enhanced fecundity. Our results provide strong support for the hypothesis that the evolution of extra-pair mating by females is favoured by indirect benefits and shows that such benefits accrue much later in the offspring’s life than previously documented.

Science Applications in the Deepwater Horizon Oil Spill Special Feature: Composition and fate of gas and oil released to the water column during the Deepwater Horizon oil spill

August 26, 2011 Comments off

Science Applications in the Deepwater Horizon Oil Spill Special Feature: Composition and fate of gas and oil released to the water column during the Deepwater Horizon oil spill (PDF)
Source: Proceedings of the National Academy of Sciences

Quantitative information regarding the endmember composition of the gas and oil that flowed from the Macondo well during the Deepwater Horizon oil spill is essential for determining the oil flow rate, total oil volume released, and trajectories and fates of hydrocarbon components in the marine environment. Using isobaric gas-tight samplers, we collected discrete samples directly above the Macondo well on June 21, 2010, and analyzed the gas and oil. We found that the fluids flowing from the Macondo well had a gas-to-oil ratio of 1,600 standard cubic feet per petroleum barrel. Based on the measured endmember gas-to-oil ratio and the Federally estimated net liquid oil release of 4.1 million barrels, the total amount of C1-C5 hydrocarbons released to the water column was 1.7 × 1011 g. The endmember gas and oil compositions then enabled us to study the fractionation of petroleum hydrocarbons in discrete water samples collected in June 2010 within a southwest trending hydrocarbon-enriched plume of neutrally buoyant water at a water depth of 1,100 m. The most abundant petroleum hydrocarbons larger than C1-C5 were benzene, toluene, ethylbenzene, and total xylenes at concentrations up to 78 μg L-1. Comparison of the endmember gas and oil composition with the composition of water column samples showed that the plume was preferentially enriched with water-soluble components, indicating that aqueous dissolution played a major role in plume formation, whereas the fates of relatively insoluble petroleum components were initially controlled by other processes.

Inferring the structure and dynamics of interactions in schooling fish

August 25, 2011 Comments off

Inferring the structure and dynamics of interactions in schooling fish (PDF)
Source: Proceedings of the National Academy of Sciences

Determining individual-level interactions that govern highly coordinated motion in animal groups or cellular aggregates has been a long-standing challenge, central to understanding the mechanisms and evolution of collective behavior. Numerous models have been proposed, many of which display realistic-looking dynamics, but nonetheless rely on untested assumptions about how individuals integrate information to guide movement. Here we infer behavioral rules directly from experimental data. We begin by analyzing trajectories of golden shiners (Notemigonus crysoleucas) swimming in two-fish and three-fish shoals to map the mean effective forces as a function of fish positions and velocities. Speeding and turning responses are dynamically modulated and clearly delineated. Speed regulation is a dominant component of how fish interact, and changes in speed are transmitted to those both behind and ahead. Alignment emerges from attraction and repulsion, and fish tend to copy directional changes made by those ahead. We find no evidence for explicit matching of body orientation. By comparing data from two-fish and three-fish shoals, we challenge the standard assumption, ubiquitous in physics-inspired models of collective behavior, that individual motion results from averaging responses to each neighbor considered separately; three-body interactions make a substantial contribution to fish dynamics. However, pairwise interactions qualitatively capture the correct spatial interaction structure in small groups, and this structure persists in larger groups of 10 and 30 fish. The interactions revealed here may help account for the rapid changes in speed and direction that enable real animal groups to stay cohesive and amplify important social information.

Continued warming could transform Greater Yellowstone fire regimes by mid-21st century

August 17, 2011 Comments off

Continued warming could transform Greater Yellowstone fire regimes by mid-21st century (PDF)
Source: Proceedings of the National Academy of Sciences

Climate change is likely to alter wildfire regimes, but the magnitude and timing of potential climate-driven changes in regional fire regimes are not well understood. We considered how the occurrence, size, and spatial location of large fires might respond to climate projections in the Greater Yellowstone ecosystem (GYE) (Wyoming), a large wildland ecosystem dominated by conifer forests and characterized by infrequent, high-severity fire. We developed a suite of statistical models that related monthly climate data (1972–1999) to the occurrence and size of fires >200 ha in the northern Rocky Mountains; these models were cross-validated and then used with downscaled (∼12 km × 12 km) climate projections from three global climate models to predict fire occurrence and area burned in the GYE through 2099. All models predicted substantial increases in fire by midcentury, with fire rotation (the time to burn an area equal to the landscape area) reduced to <30 y from the historical 100–300 y for most of the GYE. Years without large fires were common historically but are expected to become rare as annual area burned and the frequency of regionally synchronous fires increase. Our findings suggest a shift to novel fire–climate–vegetation relationships in Greater Yellowstone by midcentury because fire frequency and extent would be inconsistent with persistence of the current suite of conifer species. The predicted new fire regime would transform the flora, fauna, and ecosystem processes in this landscape and may indicate similar changes for other subalpine forests.


Get every new post delivered to your Inbox.

Join 363 other followers